Что полезно знать об аккумуляторах для мобильных телефонов. Аккумуляторы в смартфонах: основные виды, их плюсы и минусы Схема аккумуляторной батареи телефона

Статьи и Лайфхаки

Содержание :

1.
2.
3.
4.
5.
6.

Год от года аккумуляторы в смартфонах становятся всё более совершенными: увеличивается их емкость, уменьшаются вес и габариты, исчезают недостатки.

Не стоит забывать и про экологическую безопасность, ведь эта деталь считается наиболее «грязной» в современных гаджетах.

Посмотрим, какие же «батарейки» можно встретить сегодня в мобильных устройствах.


Основные виды аккумуляторов

На протяжении истории развития сотовых телефонов в них использовалось четыре вида батарей :
  • никель-кадмиевые;
  • никель-металлогибридные;
  • литий-ионные;
  • литий-полимерные.
К настоящему времени в арсенале разработчиков остались два последних типа как наиболее технологичные, эффективные и «чистые». Именно эти виды аккумуляторов можно встретить в описаниях большинства смартфонов.

Этот тип источников питания пришел еще из домобильной эры. Первые образцы известны с конца XIX века. До конца минувшего столетия промышленники предпринимали многочисленные попытки избавиться от присущих им недостатков, и в какой-то мере им это удалось.

Так или иначе, особого выбора у разработчиков первых мобильных устройств просто не было. Основные претензии заключались в следующем :

  • использование в конструкции вредных для здоровья человека токсичных металлов;
  • недостаточная емкость батареи;
  • ограниченное число циклов заряда/разряда;
  • низкая технологичность в производстве, приводящая к повышению себестоимости;
  • так называемый «эффект памяти».
Последний состоял в том, что при зарядке не до конца разряженной батареи ее емкость уменьшалась на определенную величину. Как следствие, перед первым использованием аккумулятор приходилось несколько раз прогонять через цикл полного заряда-разряда.

Имелись у таких источников питания и плюсы – широкий диапазон рабочих температур. Тем не менее, минусов было существенно больше, и при попытке справиться с ними был создан следующий тип батареи.


В них отсутствовал токсичный кадмий, при одном упоминании о котором с особо впечатлительными защитниками природы случается истерика. Кроме того, эффект памяти был выражен значительно слабее.

Также повысилась и емкость, а себестоимость, напротив, немного снизилась. Но были по сравнению с NiCd аккумуляторами и серьезные недостатки :

  • необходимость использования сложного зарядного устройства;
  • уменьшение числа циклов заряда/разряда.
Оба вида батарей были подвержены достаточно высокой степени саморазряда, что серьезно ограничивало автономность мобильных устройств на их основе. И когда на горизонте появилось следующее поколение, конструкторы с радостным визгом вышвырнули их на свалку истории.


Этот тип батарей вызвал настоящую революцию в мире гаджетов.

Отныне длительность их работы в режиме ожидания возросла в разы. Исчез и набивший оскомину эффект памяти, хотя некоторые особо продвинутые пользователи по старой памяти продолжают «тренировать» аккумуляторы своих девайсов.

Большинство представленных сегодня на рынке моделей смартфонов оснащено именно этим типом аккумулятора.

Но есть у них и недостатки, причем достаточно неприятные :

  1. Узкий диапазон рабочих температур.
  2. Потенциальная опасность разрушения батареи при глубоком разряде или перезарядке.
  3. Быстрое «старение», спустя 2-3 года выводящее аккумулятор из строя.
  4. Довольно высокая себестоимость.
Следует сказать, что со времен первого появления в магазинах этого типа источника питания недостатки были существенно нивелированы. Но производителям хотелось большего.

Прежде всего, их не устраивала достаточно высокая себестоимость, поэтому был создан очередной тип батареи.


В них взрывоопасный электролит уступил место полимерной массе. Цена таких источников питания снизилась незначительно, главным образом – из-за необходимости использования более сложных защитных схем. Мощность тоже не слишком увеличилась.

Но зато твердый полимер хорош тем, что развязал руки дизайнерам, позволив по своему усмотрению выбирать форму и размер элемента. Приблизительно в это время появилось множество сверхтонких моделей смартфонов с несъемными аккумуляторами.

Оба типа литиевых батарей имеют общий недостаток: вне зависимости от интенсивности использования и числа циклов заряда/разряда их емкость постепенно снижается. И уже спустя пару лет гаджет со спокойной совестью можно выбрасывать. Или, скажем, повесить на стену в качестве экзотического украшения.

Считается, что литий-полимерный тип чуть менее «живучий», но эта информация – из разряда мифов, встречаются примеры, как подтверждающие, так и опровергающие это утверждение. Так что наверняка отличить правду от вымысла не представляется возможным.

Технология быстрой зарядки

Нередко от продавцов, предлагающих купить смартфон, можно услышать о некоем аккумуляторе с функцией быстрой зарядки. Особо продвинутые пугают покупателей еще и внушительно звучащим Qualcomm Quick Charge, а самые матерые добавляют еще и версию – 2.0 или 3.0. Что же это за чудо-батареи такие?

В действительности никакого отношения к типу источника питания эта технология не имеет. Она всего лишь позволяет использовать увеличенную силу тока, благодаря чему время зарядки существенно сокращается.

А чтобы не возник губительный перезаряд и зарядка осуществлялась правильно – следит чипсет, в котором, собственно, эта технология и реализована. На сегодняшний день она отлично отработана, и угрозы гаджету при ее использовании не возникает.

Подводя итоги, можно сказать : основными типами аккумуляторов в смартфонах сегодня являются литий-ионные (Li-Ion) и литий-полимерные (Li-Pol). В моделях мобильных устройств можно встретить как те, так и другие, и какой-то альтернативы им в обозримом будущем не просматривается.

Но зато массовое внедрение таких батарей превратило литий в стратегически значимый элемент, а страны, располагающие залежами минералов, его содержащих – в объекты коммерческого (и не только) интереса транснационального капитала.

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC . Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки ("банки") на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная - сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе - это по сути "мозг" контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 - ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 - это MOSFET-транзисторы.


Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.


Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge ) микросхемы DW01-P, контролирует разряд аккумулятора - подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge ) - подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты в целом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 - 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 - 4,3V (Overcharge Protection Voltage - V OCP ), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 - 4,1V (Overcharge Release Voltage - V OCR ) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от перезаряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 - 2,5V (Overdischarge Protection Voltage - V ODP ), то контроллер выключает MOSFET-транзистор разряда FET1 - он подключен к выводу DO.

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 - 3,1V (Overdischarge Release Voltage - V ODR ), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за "смерть" аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер - G2NK (серия S-8261 ), сборка полевых транзисторов - KC3J1 .


Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.


При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.


Чтобы контроллер вновь подключил аккумулятор к "внешнему миру", то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 - 3,1V (V ODR ).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от перезаряда? Как нам снова подзарядить "банку" аккумулятора, чтобы контроллер опять включил транзистор разряда - FET1?

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P ,G2NK ), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда - Charger Detection . То есть при подключении зарядного устройства схема определит, что зарядное устройство подключено и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время - несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6 . О том, как это сделать, можно узнать .

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться "восстановительная" зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых аккумуляторов входит защита от перегрузки по току (Overcurrent Protection ) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Полевой транзистор с изолированным затвором

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n - переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые). Другое название, которое можно встретить при описании полевых транзисторов - МОП (металл - окисел - полупроводник) обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO 2). Еще одно, довольно распространенное название - МДП (металл - диэлектрик - полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET , мосфет , MOS-транзистор . Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET - это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл - окисел - полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET - это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction - переход). Транзисторы J-FET также являются полевыми транзисторами, но управление таким транзистором осуществляется за счёт применения в нём управляющего p-n перехода. Эти транзисторы в отличие от MOSFET имеют немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку МДП-транзисторы бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Основу МДП-транзистора составляет:

    Подложка из кремния . Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

    Области полупроводника n+ . Данные области сильно обогащены свободными электронами (поэтому "+"), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

    Диэлектрик . Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO 2). К поверхности диэлектрика подключен электрод затвора - управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+ ) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал - область проводимости . На рисунке канал показан синим цветом. То, что канал типа n - это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется - перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в устройство полевого транзистора с изолированным затвором.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа - в нём канал «обогащается» электронами. В транзисторе обеднённого типа в области канала уже присутствуют электроны, поэтому транзистор пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET транзисторов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами - диэлектрик из оксида кремния (SiO 2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора .

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET-транзисторы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET ” или похожую. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому - напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологий изготовления полевых транзисторов удалось избавиться от этой проблемы. Современные полевые транзисторы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор - IGBT-транзистор , который представляет собой гибрид полевого и биполярного транзистора.

IGBT транзистор

Биполярный транзистор с изолированным затвором

В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют БТИЗ. БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.

IGBT транзистор - это довольно хитроумный прибор, который представляет собой гибрид полевого и биполярного транзистора. Данное сочетание привело к тому, что этот тип транзистора унаследовал положительные качества, как полевого транзистора, так и биполярного.

Суть работы IGBT транзистора заключается в том, что полевой транзистор управляет мощным биполярным транзистором. В результате переключение мощной нагрузки становиться возможным при малой управляющей мощности, так как управляющий сигнал поступает на затвор полевого транзистора.

Внутренняя структура БТИЗ - это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.

Весь процесс работы БТИЗ может быть представлен двумя этапами: как только подается положительное напряжение, между затвором и истоком открывается полевой транзистор, то есть образуется n - канал между истоком и стоком. При этом начинает происходить движение зарядов из области n в область p , что влечет за собой открытие биполярного транзистора, в результате чего от эмиттера к коллектору устремляется ток.

История появления БТИЗ.

Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого транзистора с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.

Несколько позже, в 1985 году был представлен биполярный транзистор с изолированным затвором, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.

Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобные недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.

Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (I кэ max ), а рабочее напряжение (U кэ max ) может варьироваться от нескольких сотен до тысячи и более вольт.

Условное обозначение БТИЗ (IGBT) на принципиальных схемах.

Поскольку IGBT транзистор имеет комбинированную структуру из полевого и биполярного транзистора, то и его выводы получили названия затвор - З (управляющий электрод), эмиттер (Э ) и коллектор (К ). На зарубежный манер вывод затвора обозначается буквой G , вывод эмиттера - E , а вывод коллектора - C .

На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Транзистор также может изображаться со встроенным быстродействующим диодом. Также IGBT транзистор может изображаться следующим образом:

Особенности и сферы применения БТИЗ.

Отличительные качества транзисторов IGBT:

    Управляется напряжением (как любой полевой транзистор);

    Имеют низкие потери в открытом состоянии;

    Могут работать при температуре более 100 0 C;

    Способны работать с напряжением более 1000 Вольт и мощностями свыше 5 киловатт.

Перечисленные качества позволили применять IGBT транзисторы в инверторах, частотно-регулируемых приводах и в импульсных регуляторах тока. Кроме того, они часто применяются в источниках сварочного тока, в системах управления мощными электроприводами, которые устанавливаются, например, на электротранспорт: электровозы, трамваи, троллейбусы. Такое решение значительно увеличивает КПД и обеспечивает высокую плавность хода.

Кроме того, устанавливают данные устройства в источниках бесперебойного питания и в сетях с высоким напряжением. IGBT транзисторы можно обнаружить в составе электронных схем стиральных, швейных и посудомоечных машин, инверторных кондиционеров, насосов, системах электронного зажигания автомобилей, системах электропитания серверного и телекоммуникационного оборудования. Как видим, сфера применения БТИЗ довольно велика.

Стоит отметить, что IGBT и MOSFET в некоторых случаях являются взаимозаменяемыми, но для высокочастотных низковольтных каскадов предпочтение отдают транзисторам MOSFET, а для мощных высоковольтных - транзисторам IGBT.

Так, например, IGBT транзисторы прекрасно выполняют свои функции при рабочих частотах до 20-50 килогерц. При более высоких частотах у данного типа транзисторов увеличиваются потери. Также наиболее полно возможности IGBT транзисторов проявляются при рабочем напряжении более 300-400 вольт. Поэтому биполярные транзисторы с изолированным затвором легче всего обнаружить в высоковольтных и мощных электроприборах.

Зачем аккумулятору на цифровой технике 3 контакта, если он может заряжаться и от двух?

Третий контакт используется для передачи данных по протоколу 1-Wire (на аккумуляторах с 4 и более контактами, например, в ноутбуках, используется i2c протокол).
В аккумуляторе встроен датчик температуры и контроллер контроля заряда, который сообщает заряд в процентах и способен отключать аккумулятор в случае переразряда или перезаряда. Есть и более тупые аккумуляторы, где третий пин заведён на термистор и служит только для измерения температуры.
На аккумулятор также может возлагаться и более крутая функциональность. В фотоапаратах Sony аккумулятор рулил подсветкой дисплея, в PSP аккумулятор управлял сервисным режимом запуска приставки, в последней ревизии туда засунули даже AES шифрование и обмен ключами. Да, всё это на третьем контакте.
И что происходит с аккумулятором, когда он зарядился до максимума и его оставили заряжаться дальше, включенным в сеть? У зарядного устройства есть какой-нибудь предохранительный режим после полной зарядки аккумулятора?

заряд литиевого аккумулятора происходит по схеме CC-CV (Constant Current - Constant Voltage). На начальном этапе зарядки, зарядное устройство следит, чтобы зарядный ток не выходил за пределы допустимого (обычно порядка 1C, то есть примерно равному емкости аккумулятора в mAh). Как только напряжение аккумулятора подходит к максимально допустимому (4.2 В для обычных, иногда 4.35 В для аккумов повышенной емкости, 3.6 В для высокотоковых LiFePO4), зарядка ограничивает ток, чтобы напряжение не превышало эту планку. То есть сама зарядка следит, чтобы перезаряда никогда не случилось. Можно сравнить с наполнением ведра сначала быстрым потоком воды, насколько позволяет шланг, потом всё уменьшая поток воды, чтобы плещущаяся вода не переливалась через край, в конце аккуратно по капельке добавляют чтоб полностью наполнить и не пролить....
И скорость зарядки аккумулятора зависит от диаметра проводов в трансформаторе зарядки?
Их же там соотношение 230 на первичной и 6 на вторичной?

В современных зарядниках стоят импульсные преобразователи, никаких трансформаторов. Скорость зарядки ограничена 1) максимальным током, что может выдать зарядка, 2) максимальным током, что может принять телефон, 3) проводами, через которые идёт зарядка. Обычный USB может пропустить не более 2 ампера, дальше пойдёт перегреваться и небезопасно. Вместо повышения зарядного тока, производители пошли по пути повышения напряжения. Зарядка выдаёт 12 вольт, телефон внутри преобразует в меньшее напряжение, с большим током. В итоге и провод не греется, и потерь меньше. А ещё чем больше емкость аккума телефона, тем большим током его можно заряжать, больше энергии накопится на начальном этапе заряда....
Черт, что-то много написал. Позадавайте уточняющих вопросов, чтоб всё подряд не описывать.

Рассказывам об особенностях устройства батарей в мобильных девайсах.

Миллионы людей во всем мире являются активными пользователями мобильных устройств. Это плоды гигантской, мультимиллиардной индустрии, раз и навсегда изменившей наш образ жизни. Маленькие и не очень, функциональные и простые, дорогие и дешевые мобильные телефоны, планшеты и ноутбуки объединяет один фактор - все они используют для работы заряд батарей. Без них, все эти девайсы превратились бы в куски пластика, метала и текстолита, неспособные прожить и минуты без розетки.

Батареи внутри вашего мобильного устройства представляют собой чудеса химической инженерии - они способны накапливать огромный заряд энергии, способный поддерживать работоспособность устройств на протяжении часов. Как же они устроены?

Большинство современных мобильных устройств используют литий-ионные (или Li-ion) батареи, состоящие из двух основных частей: пары электродов и электролита между ними. Материалы, из которых сделаны эти электроды, варьируются (литий, графит и даже нанопровода), но все они полагаются на химические процессы в основе которых стоит литий.

Это химически активный метал, что подразумевает его способность вступать в реакцию с другими элементами. Чистый литий настолько активен, что воспламеняется под воздействием воздуха, поэтому большинство батарей используют его более безопасную разновидность, именуемую литий оксид кобальта.

Между двух электродов находится электролит, в роли которого обычно выступает жидкий органический растворитель, способный пропускать ток. Когда литий-ионная батарея заряжена, молекулы литий оксид кобальта удерживают электроны, которые затем высвобождаются, когда ваш телефон работает.

Литий-ионные батареи являются наиболее распространенными, потому что могут накапливать большой заряд при малом размере. Это измеряется по шкале плотности энергии на единицу массы. Для литий-ионной батареи этот показатель равен 0,46–0,72 МДж/кг. Для сравнения, у Никель-металл-гидридного аккумулятора (Ni-MH) он равняется 0,33 МДж/кг. Иными словами, литий-ионные батареи меньше и легче, чем другие типы аккумуляторов, что подразумевает более компактные девайсы с более продолжительной «живучестью» от одного заряда.

Емкость аккумулятора


Емкость батареи измеряется в миллиампер-часах (мАч), что означает какое количество энергии сможет выдать аккумулятор за конкретный промежуток времени. К примеру, если емкость батареи равна 1000 мАч, то она сможет предоставить вам 1000 миллиампер на протяжении 1 часа. Если ваш девас будет потреблять 500 миллиампер в час, то проработает он уже 2 часа.

Однако понятие «живучести батареи» чуть сложнее, вышеописанного принципа, так как потребление энергии варьируется в зависимости от того, какие задачи девайс выполняет. Например, если у него включен экран, работает антенна сотовой связи, а процессор загружен тяжелой работой, то девайс будет потреблять больше энергии, чем когда экран выключен, а процессор и антенна находятся в режиме ожидания.

Именно поэтому не нужно слепо полагаться на заявленные производителем показателям автономности работы - производитель может выдавать эти цифры с учетом основе яркости экрана, без включения некоторых функций, как-то Wi-Fi или GPS. Стоит отметить, что Apple в этом отношении действует более честно, указывая «живучесть» устройства на основании выполнения конкретных задач. Если вам любопытно сколько энергии поглощает в том или ином режиме работы, советуем воспользоваться специальным приложением Battery Life Pro.

Контроль за потоком энергии


Так как у литий-ионных батарей имеется тенденция к возгоранию, они должны быть подвержены тщательному контролю. Производители батарей достигли этого путем включения специального контроллера, который следит за силой тока. В итоге, каждый аккумулятор содержит внутри маленький компьютер, который предотвращает слишком быструю разрядку и потерю заряда до опасно низкого уровня. Этот компонент также регулирует силу тока во время зарядки, понижая его по мере того, как заряд батареи приближается к максимальной отметке, чтобы избежать чрезмерной зарядки.

Именно поэтому, полностью разряженный девайс, поставленный на подзарядку, греется в этом процессе намного сильнее, чем лишь немного разряженный.

Будущее аккумуляторов


Технологии по производству батарей не стоят на месте - множество исследовательских лабораторий по всему миру исследуют новые технологии, способные заменить литий, а также новые походы по созданию литий-ионных батарей. Среди новых технологий, много работы было проделано с супер-конденсаторами, в которых батарея хранит энергию в форме электричества, а затем высвобождает ее подобно вспышке на фотоаппарате.

Супер-конденсаторы заряжаются намного быстрее, так как в этом процессе практически не задействованы химические реакции, но современные представители такого рода накопителей способны отдавать заряд лишь короткими порциями, что является противоположностю тому, что требуется для большинства мобильных устройств.

Топливные элементы на основе водорода, тоже являются альтернативой существующим батареям. Система топливных элементов от Nectar, представленная на недавней CES, использует десятидолларовый картридж, способный питать мобильный телефон до двух недель. Однако топливные элементы все еще слишком велики, чтобы поместится в телефоне - та же система от Nectar просто подзаряжает литий-ионную батарею, а не заменяет ее.

А вот сера вполне может занять место внутри литий-ионных батарей. Ученые из Стэндфордского Университета недавно представили нанотехнологию по включению серы в химический состав батареи, что увеличило ее емкость в пять раз, а также увеличило срок службы. В то же время, эта технология находится пока на ранней стадии развития и не выйдет на рынок в ближайшие несколько лет.

P.S. Аккумуляторы в мобильных устройствах, равно как и обычные батарейки, требуют определенной утилизации - просто так выбрасывать их в мусорный бак нельзя. Поэтому рады напомнить вам, что iLand готов взять на себя утилизацию отживших свое элементов питания. Просто принесите их к нам в офис, а об остальном мы позаботимся!

Аккумулятор - неотъемлемая часть мобильного телефона, которая обеспечивает ему автономную работу. От правильности эксплуатации аккумулятора, а также от возможностей вашего телефона будет зависеть то, как часто вам придется использовать зарядное устройство.

Виды аккумуляторов

Существует три основных вида аккумуляторов, используемых в мобильных телефонах: никель-кадмиевые, литий-ионные и литий-полимерные. На самом деле их больше, но остальные виды не получили массового распространения, поэтому мы оставим их за рамками этой статьи.

Никель-кадмиевые аккумуляторы когда-то были очень популярными, но сегодня от них почти отказались из-за пагубного влияния на экологию и ряда других недостатков. В современных мобильных телефонах их не используют, разве что вы найдете такой аккумулятор в какой-нибудь очень старой модели. В свое время их массовое распространение было обусловлено низкой стоимостью, в остальном же они обладали целым рядом отрицательных качеств: быстрая саморазрядка, низкое соотношение емкости и физических размеров, сильное разогревание в процессе эксплуатации. Никель-кадмиевые аккумуляторы обладают так называемым «эффектом памяти», из-за которого их приходится регулярно по несколько циклов подряд заряжать и разряжать полностью. Этот эффект проявляется тогда, когда начинают подзаряжать еще не севший полностью аккумулятор. При этом остается заряд, который не может быть использован, а в результате снижается время автономной работы устройства. Для никель-кадмиевых аккумуляторов в среднем характерно свыше 1000 циклов зарядки-разрядки.

Самое большое распространение в современных мобильных устройствах получили литий-ионные аккумуляторы. Они более долговечные и менее вредные для окружающей среды, чем никель-кадмиевые, и при этом обладают гораздо большей энергетической плотностью: при скромных физических размерах имеют относительно высокую емкость. У них отсутствует «эффект памяти», им свойственна низкая скорость саморазрядки. К недостаткам этого вида аккумуляторов можно отнести старение (даже если они не используются по прямому назначению), поэтому покупать их впрок не рекомендуется. А еще лучше обращать внимание на дату производства при покупке нового литий-ионного аккумулятора. Этот вид аккумуляторов не требует какого-либо особого обслуживания, но при правильном хранении (в заряженном состоянии) и эксплуатации с соблюдением температурного режима он прослужит гораздо дольше. Для литий-ионных аккумуляторов в среднем характерно от 500 до 1000 циклов зарядки-разрядки.


Литий-полимерные аккумуляторы представляют собой усовершенствованную модель литий-ионных аккумуляторов, но при этом стоят дешевле. Они отличаются высокой энергетической плотностью, медленной саморазрядкой, а также они еще более безопасны для окружающей среды. Как и литий-ионным аккумуляторам, им свойственно постепенное старение. Для литий-полимерных аккумуляторов в среднем характерно от 500 до 600 циклов зарядки-разрядки.

Особенности эксплуатации аккумуляторов

Сократить срок службы большинства аккумуляторов или полностью привести их в негодность могут следующие причины:

  • несоблюдение правил эксплуатации (переохлаждение, перегрев, попадание влаги);
  • физические повреждения контактной группы;
  • самостоятельное вскрытие аккумулятора в домашних условиях;
  • частые падения и удары;
  • подзарядка аккумулятора с включенным телефоном;
  • замена аккумулятора с включенным телефоном;
  • регулярные длительные подзарядки (больше суток во включенном состоянии);
  • длительное хранение без эксплуатации.

Любой из трех рассмотренных видов аккумуляторов со временем теряет свою емкость и через 2-3 года постоянной эксплуатации подлежит замене. Это нормальный процесс - не стоит ругать производителей за некачественный продукт, который часто служит гораздо меньше, чем сам мобильный телефон. Если возникла необходимость замены, следует выбирать более дорогие фирменные аккумуляторы, а не дешевые подделки, так как экономия в этом случае может получиться очень сомнительной.

Также следует знать, что на длительность автономной работы вашего устройства может значительно повлиять расположение базовых станций мобильного оператора. Чем дальше станция, тем больше энергии требуется для получения сигнала и тем быстрее потребуется повторная подзарядка аккумулятора.

Выбор телефона в зависимости от емкости аккумулятора

Сегодня в продаже можно встретить телефоны, которые укомплектованы аккумуляторами емкостью от 800 до 1500 мА·ч. Есть модели телефонов с емкостью аккумулятора вне этого диапазона, но они скорее являются исключением из правил.

При покупке телефона и предварительном расчете времени его автономной работы следует правильно оценивать возможности мобильного устройства в целом. Дело в том, что далеко не каждый телефон или смартфон с аккумулятором емкостью 1300-1500 мА·ч будет работать неделями напролет, все может быть как раз наоборот. Производитель обычно указывает в спецификациях устройства не только емкость аккумулятора, но и время автономной работы в режиме непрерывного разговора по телефону и в режиме ожидания. В первом случае это обычно 5-8 часов, во втором - около двух недель. Но это сухие цифры для крайних случаев - на самом деле мы понимаем, что разговаривать часами или просто смотреть на телефон сутки напролет никто не будет. Поэтому реальное время работы телефона будет зависеть от его технических характеристик и емкости аккумулятора, а не от одного какого-либо фактора.


Обычно чем телефон проще, тем дольше он сможет проработать без подзарядки. Основная часть «долгоиграющих» телефонов - это типичные моноблоки, которые имеют самый обычный экран диагональю до 2 дюймов и не подразумевают постоянное использование беспроводных коммуникаций (модулей Bluetooth, Wi-Fi, GPS и т. п.). Емкость аккумуляторов для большинства этих устройств невелика (до 1000 мА·ч), но отсутствие энергоемких функций и модулей при умеренной нагрузке позволяет подзаряжать его примерно раз в 5-7 дней. Под умеренной нагрузкой мы понимаем ежедневные звонки в течение 30-50 минут, 2-3 отправленных/принятых сообщения, 1-2 сделанных фотокамерой снимка, около получаса работы с дополнительными приложениями (браузером, органайзером, аудиопроигрывателем).

Сегодня очень популярными являются мобильные телефоны и смартфоны с сенсорными экранами . Они современные и удобные, но не могут долго работать без подзарядки. Крупные сенсорные экраны (а чаще всего они имеют 3-4 дюйма по диагонали) являются очень энергоемкими, к тому же значительную нагрузку дает аппаратная платформа (если речь идет о смартфоне). Кроме того, тачфоны чаще других используют для проверки электронной почты, прокладки маршрута, передачи данных, просмотра мультимедийного контента - все эти возможности дополнительно «съедают» изрядную долю емкости аккумулятора. За редким исключением, график работы смартфонов с сенсорными экранами следующий: работа днем, подзарядка вечером.

Loading...Loading...