Строение зарядного устройства для телефона. How to: Ремонт китайской зарядки для мобильного. Как работает аккумулятор

Интересно, из чего же состоит зарядное устройство (блок питания) Сименса и возможно ли его починить самостоятельно в случае поломки.

Для начала блок нужно разобрать. Судя по швам на корпусе этот блок не предназначен для разборки, следовательно вещь одноразовая и больших надежд в случае поломки можно не возлагать.

Мне пришлось в прямом смысле раскурочить корпус зарядного устройства, оно состоит из двух плотно склеенных частей.

Внутри примитивная плата и несколько деталей. Интересно то, что плата не припаяна к вилке 220в., а крепится к ней при помощи пары контактов. В редких случаях эти контакты могут окислиться и потерять контакт, а вы подумаете, что блок сломался. А вот толщина проводов, идущих к разъему на мобильный телефон, приятно порадовала, не часто встретишь в одноразовых приборах нормальный провод, обычно он такой тонкий, что даже дотрагиваться до него страшно).

На тыльной стороне платы оказалось несколько деталей, схема оказалась не такой простой, но все равно она не такая и сложная, чтобы не починить ее самостоятельно.

Ниже на фото контакты внутки корпуса.

В схеме зарядного устройства нет понижающего трансформатора, его роль играет обычный резистор. Далее как обычно парочка выпрямляющих диодов, пара конденсаторов для выпрямления тока, после идет дроссель и наконец стабилитрон с конденсатором завершают цепочку и выводят пониженное напряжение на провод с разъемом к мобильному телефону.

В разъеме всего два контакта.

Короче заебала меня родная зарядка к телефону нокиа с отэм, сука, милипиздрическим разъемом:

Вечно отходит, вываливается. Говно короче.

Благо у телефона есть, уже ставший стандартом, разъем микроЮСБ. Ну у моего, по крайней мере, есть. Да, и за нокию не пинать, телефон у меня для связи. Для развлечений планшет. (типа выебнулся). Так вот через этот разъем телефон отлично заряжается, если есть зарядка.

А тут еще на днях принесли очередную, отжившую свой короткий век, "оригинальную" китайскую зарядку нокиа. Мне их сносят время от времени сотрудники. Не знаю нахуя, я их не чиню никому, ну окромя этого случая, и то поскольку для себя Видать из за паяльника на столе и особой репутации в нашей конторе. Ну не суть. Была она с именно вот тем правильным микроЮСБ разъемом:

Сразу скажу самое простое было бы перепаять шнурок к родной зарядке, но я не искал простых путей. Ибо приобретенный опыт, хоть и мал, но весьма полезен. Кстати еще можно купить новую зарядку, но это затраты, время на поездку. Я то забываю, то лень.

Делюсь впечатлениями, опытом, ну и немного юмора не помешает.

Заебашил я себе кофейку, дабы листая гугл на предмет типичных ситуаций с зарядками, советы бывалых, ремонтные случаи, не уснуть. Толку мало дало, ибо тысячи их, если не миллиарды, как китайцев. Хотя дало общее представление схемотехники зарядок и понимание хуйовая, или совсем пиздец.

Застелил я стол черновичком, достал несколько подходящих трупиков, воткнул паяльничек в розетку, раскрутил для дефектовки:

Зарядка с правильным шнурком пошла по миру крепко. Выгорело практически все полупроводниковое содержание:

Вторая из закромов, хз от чего, без шнурка, выглядела живенько, но не работала:

На всякий, у меня был еще рабочий блок питания, хз от чего, но с довольно грамотной схемотехникой, только вздутый кондер поменять:

Но я его пожалел и отложил в сторону. В случае невозможности починить что нить из первых двух, я бы взялся за него.

По пути малого сопротивления дефектовка второй зарядки показала сгоревший диод и резистор, кои хитрые китайцы, из за удешевления, используют как предохранители. Выпаиваю:

Вид с другой стороны. Кстати схемотехника нормального уровня, на порядок лучше первой зарядки:

Первую решено использовать как донора, диод норм, а резистор уже сгоревший:

Нашел в закромах аналог, чем чуть позже поплатился:

ВНИМАНИЕ! АХТУНГ! ВОРНИНГ!

Запаял я диод и резистор, ткнул в розетку, и загоревшийся светодиод весело зазеленел:

Есть контакт.

"Резистор слабоват" сказала зарядка, и грустный сизый дымок подтвердил её слова.

Ладно сказал я, и полез в закрома в поисках аналога. Попутно найдя варистор и дроссель, на которых сэкономили узкоглазые. Перезапаиваю:

Новые тест, все ок (фото не особо получилось).

Зарядное устройство (ЗУ) типа BML 162089 R1A южно азиатского производства предназначено для зарядки аккумуляторов мобильных телефонов LG и имеет следующие характеристики: Uвход ~100…250 B, Iвход~160 мA, Uвых=8,5 В, Iвых=750 мA. Его внешний вид показан на рис.1.

Все радиоэлементы смонтированы на стекло пластиковом шасси НТ608 размерами 64×33 мм методом навесного монтажа без применения чип-элементов. Шасси размещено внутри пластмассового корпуса. По монтажной схеме шасси автором составлена принципиальная схема, показанная на рис.2.

Основой ЗУ является импульсный преобразователь. Принцип работы подобных импульсных источников питания прост: вначале переменное напряжение сети выпрямляется до постоянного напряжения 300 В, а далее с помощью генератора с мощным электронным ключом преобразуется в импульсы, которые через обмотки импульсного трансформатора наводятся во вторичной цепи, где выпрямляются до заданной величины (в зависимости от количества витков вторичной обмотки).

Импульсный преобразователь данного ЗУ состоит из однотактного преобразователя авто генераторного типа (транзистор VТ1),
подключенного к первичной сети. Переменное напряжение сети выпрямляется диодом VD4 (рис.2), сглаживается электролитическим конденсатором С1 и через обмотку 1-2трансформатора Т1 прикладывается к коллектору транзистора VТ1. Это же напряжение через резистор R2 подается на базу транзистора VT1, создавая положительное смещение.
Транзистор открывается, через первичную обмотку Т1 протекает ток, который наводит ЭДС в двух других обмотках трансформатора. Через обмотку положительной обратной связи 3-4 заряжается конденсатор С2, этот ток запирает транзистор VТ1. В его закрытом состоянии накопленная в трансформаторе энергия передается во вторичную цепь. В момент запирания транзистора VТ1 приложенное к нему напряжение может превышать напряжение сети в 3–4раза. Для уменьшения этого перенапряжения параллельно обмотке 1-2 включен резистор R1, выполняющий функцию демпфирующего элемента.
Более эффективно эту функцию могла бы выполнять цепочка, состоящая из последовательно соединенных резистора, конденсатора и диода, что сделало бы ЗУ более надежным. Цепь демпфирования в цепи базы транзистора выполнена на элементах VТ2, VD7, ZD5, R3, C2.
Вторичную цепь трансформатора образуют: обмотка 5-6, элементы VD8, C4, R8, R9 и транзистор VT3 с элементами обвязки (рис.2). Звено на транзисторе VТ3 с двухцветным светодиодом LED1 является особенностью этого ЗУ. Зеленое свечение светодиода
сигнализирует о том, что идет процесс зарядки аккумулятора, красное свечение обозначает конец зарядки.

Принцип работы этого звена следующий.

Светодиод LЕD1 включен в одну из диагоналей моста, плечи которого составляют резисторы R5, R6, R7 (все по 410 Ом) и сопротивление участка коллектор0эмиттер транзистора VT3 (рис.2). Последнее плечо является регулирующим элементом моста. Ко второй диагонали этого моста приложено напряжение вторичной цепи ЗУ. При равенстве сопротивлений всех четырех плеч (в данном случае 410 Ом) потенциалы точек «а” и «б” равны. Если же сопротивления плеч различаются, потенциалы точек «а” и «б” неодинаковы, и через светодиод протекает ток, вызывающий его свечение, цвет которого зависит от полярности приложенного напряжения.
В начале заряда разряженного аккумулятора ток заряда наибольший, падение напряжения на резисторе R8 максимально, pnp транзистор VТ3 открыт, в результате чего плюсовой потенциал точки «б” диагонали моста выше потенциала точки «а” (рис.2). При такой полярности напряжения светодиод светится красным цветом.
По мере заряда аккумулятора его напряжение постепенно повышается, ток через резистор R8 уменьшается, и сопротивление коллектор0эмиттер VТ3 увеличивается, что приводит к уменьшению разности потенциалов точек «а” и «б” и, следовательно, к уменьшению яркости свечения светодиода. Когда сопротивления VТ3 сравняется с сопротивлением резистора R6 (410 Ом), мост станет уравновешенным, потенциалы точек «а” и «б” станут одинаковыми, и светодиод перестанет
светиться.
При дальнейшей зарядке аккумулятора сопротивление участка коллектор-эмиттер VТ3 превысит 410 Ом, полярность напряжений в точках «а” и «б” диагонали моста поменяется, и светодиод станет светиться зеленым цветом, сигнализируя о том, что аккумулятор зарядился.
Если после включения в сеть на «холостом ходу” (при отсутствии аккумуляторов) светодиод вообще не светится (а должен светиться зеленым цветом), значит, ЗУ неисправно и требует ремонта. Для ремонта этого ЗУ Вам необходимо добраться до его шасси, «упрятанного” в пластмассовый корпус (рис.1). Обе (нижняя и верхняя) части этого корпуса «намертво” склеены между собой. Разъединить их можно, только разрезав ножовочным полотном пластмассовый корпус по линии склеивания (рис.1). Из разрезанного корпуса извлекают плату с навесными радиоэлементами.
Далее после осмотра обычным тестером проверяют исправность всех радиоэлементов
без их выпаивания. Один из транзисторов, VТ1 или VТ2, придется все0таки выпаять, поскольку при проверке тестером их проводимости они «мешают” друг другу. Выявленные неисправные элементы заменяют. Далее ЗУ включают в сеть и, если светодиод не светится зеленым цветом, замеряют напряжение +300 В на конденсаторе С1. При его отсутствии проверяют исправность резистора R сопротивлением 2,7 Ом. При этом необходимо строго соблюдать технику электробезопасности, так как высоковольтная часть ЗУ находится под фазным напряжением, которое опасно для жизни человека.
Транзистор VТ1 (6821) можно заменить транзисторами типов 2SC3457, 2SC4020, 2SC5027, а транзистор VТ2 (2SC9013) заменим 2SC1815. Недостатком этого ЗУ является разряд аккумулятора мобильного телефона через резистор R9 при пропадании сети во время зарядки (рис.2).
Данное зарядное устройство можно приспособить также для зарядки аналогичных аккумуляторов мобильных телефонов других фирм, для этого необходимо подобрать и запаять новый разъем, обеспечив правильную полярность.

Литература
Радiоаматор 2005_4

Приветствую радиолюбители!!!
Перебирая старые платы наткнулся на парочку импульсных блоков питания от мобильных телефонов и захотелось их восстановить и заодно поведать вас о наиболее частых их поломках и устранения недостатков. На фото показаны две универсальные схемы таких зарядок, которые чаще всего встречаются:

В моем случае плата была подобна первой схеме, но без светодиода на выходе, который играет только роль индикатора присутствия напряжения на выходе блока. Прежде всего нужно разобраться с поломкой, ниже на фото я очертите детали какие чаще всего выходят из строя:

А проверять все необходимые детали будем с помощью обычного мультиметра DT9208A.
В нем есть все необходимое для этого. Режим прозвонки диодов и переходов транзисторов, а также омметр и измеритель емкости конденсаторов до 200мкф.Этого набора функций более чем достаточно.

Во время проверки радиодеталей нужно знать цоколь всех деталей транзисторов и диодов особенно.

Аккумуляторами в электротехнике приято называть химические источники тока, которые могут пополнять, восстанавливать израсходованную энергию за счет приложения внешнего электрического поля.

Устройства, которыми подают электроэнергию на пластины аккумулятора, называют зарядными: они приводят источник тока в рабочее состояние, заряжают его. Чтобы правильно эксплуатировать АКБ, необходимо представлять принципы их работы и зарядного устройства.

Как работает аккумулятор

Химический рециркулируемый источник тока при эксплуатации может:

1. питать подключенную нагрузку, например, лампочку, двигатель, мобильный телефон и другие приборы, расходуя свой запас электрической энергии;

2. потреблять подключенную к нему внешнюю электроэнергию, расходуя ее на восстановление резерва своей емкости.

В первом случае аккумулятор разряжается, а во втором — получает заряд. Существует много конструкций аккумуляторов, но, принципы работы у них общие. Разберем этот вопрос на примере никель-кадмиевых пластин, помещенных в раствор электролита.

Разряд аккумулятора

Одновременно работают две электрические цепочки:

1. внешняя, приложенная на выходные клеммы;

2. внутренняя.

При разряде на лампочку во внешней приложенной схеме из проводов и нити накала протекает ток, образованный движением электронов в металлах, а во внутренней части — перемещаются анионы и катионы через электролит.

Окислы никеля с добавлением графита составляют основу положительно заряженной пластины, а губчатый кадмий используется на отрицательном электроде.

При разряде аккумулятора часть активного кислорода окислов никеля перемещается в электролит и движется на пластину с кадмием, где окисляет его, снижая общую емкость.

Заряд аккумулятора

Нагрузку с выходных клемм для зарядки чаще всего снимают, хотя на практике используется метод при подключенной нагрузке, как на аккумуляторе движущегося автомобиля или поставленного на зарядку мобильного телефона, по которому ведется разговор.

На клеммы аккумулятора подводится напряжение от постороннего источника более высокой мощности. Оно имеет вид постоянной или сглаженной, пульсирующей формы, превышает разность потенциалов между электродами, однополярно с ними направлено.

Эта энергия заставляет течь ток во внутренней цепочке аккумулятора в направлении, противоположном разряду, когда частицы активного кислорода «выдавливаются» из губчатого кадмия и через электролит поступают на свое прежнее место. За счет этого происходит восстановление израсходованной емкости.

Во время заряда и разряда изменяется химический состав пластин, а электролит служит передаточной средой для прохождения анионов и катионов. Интенсивность проходящего во внутренней цепи электрического тока влияет на скорость восстановления свойств пластин при заряде и быстроту разряда.

Ускоренное протекание процессов ведет к бурному выделению газов, излишнему нагреву, способному деформировать конструкцию пластин, нарушить их механическое состояние.

Слишком маленькие токи при зарядке значительно удлиняют время восстановления израсходованной емкости. При частом применении замедленного заряда повышается сульфатация пластин, снижается емкость. Поэтому приложенную к аккумулятору нагрузку и мощность зарядного устройства всегда учитывают для создания оптимального режима.

Как работает зарядное устройство

Современный ассортимент аккумуляторов доволен обширен. Для каждой модели подбираются оптимальные технологии, которые могут не подойти, быть вредными для других. Производители электронного и электротехнического оборудования опытным путем исследуют условия работы химических источников тока и создают под них собственные изделия, отличающиеся внешним видом, конструкцией, выходными электрическими характеристиками.

Зарядные конструкции для мобильных электронных приборов

Габариты зарядных устройств для мобильных изделий разной мощности значительно отличаются друг от друга. Они создают специальные условия работы каждой модели.

Даже для однотипных аккумуляторов типоразмеров АА или ААА разной емкости рекомендуется использовать свое время зарядки, зависящее от емкости и характеристик источника тока. Его величины указываются в сопроводительной технической документации.

Определенная часть зарядных устройств и аккумуляторов для мобильников снабжаются автоматической защитой, отключающей питание по завершении процесса. Но, контроль за их работой все же следует осуществлять визуально.

Зарядные конструкции для автомобильных АКБ

Особенно точно соблюдать технологию зарядки следует при эксплуатации автомобильных аккумуляторов, призванных работать в сложных условиях. Например, зимой в мороз с их помощью необходимо раскрутить через промежуточный электродвигатель — стартер холодный ротор двигателя внутреннего сгорания с загустевшей смазкой.

Разряженные либо неправильно подготовленные аккумуляторы с этой задачей обычно не справляются.

Эмпирическими методами выявлена взаимосвязь тока зарядки для свинцовых кислотных и щелочных аккумуляторов. Принято считать оптимальным значением заряда (амперы) в 0,1 величину емкости (амперчасы) для первого вида и 0,25 — для второго.

Например, АКБ имеет емкость 25 ампер часов. Если он кислотный, то его необходимо заряжать током 0,1∙25=2,5 А, а для щелочного — 0,25∙25=6,25 А. Чтобы создавать такие условия потребуется использовать разные приборы или применить один универсальный с большим количеством функций.

Современное зарядное устройство для кислотных свинцовых батарей должно поддерживать ряд задач:

    контролировать и стабилизировать ток заряда;

    учитывать температуру электролита и не допускать его нагрева более 45 градусов прекращением питания.

Возможность проведения контрольно-тренировочного цикла для кислотной батареи автомобиля с помощью зарядного устройства является необходимой функцией, включающей три этапа:

1. полный заряд аккумулятора до набора максимальной емкости;

2. десятичасовой разряд током 9÷10% от номинальной емкости (эмпирическая зависимость);

3. повторный заряд разряженного аккумулятора.

При проведении КТЦ контролируют изменение плотности электролита и время завершения второго этапа. По его величине судят о степени износа пластин, длительности оставшегося ресурса.

Зарядные устройства для щелочных батарей можно применять менее сложных конструкций, ибо такие источники тока не так чувствительны к режимам недостаточной зарядки и перезаряда.

График оптимального заряда кислотно-щелочных аккумуляторов для автомобилей показывает зависимость набора емкости от формы изменения тока во внутренней цепи.

В начале технологического процесса зарядки рекомендуется поддерживать ток на максимально допустимом значении, а затем снижать его величину до минимальной для окончательного завершения физико-химических реакций, осуществляющих восстановление емкости.

Даже в этом случае требуется контролировать температуру электролита, вводить поправки на окружающую среду.

Полное завершение цикла зарядки свинцовых кислотных аккумуляторов контролируют по:

    восстановлению напряжения на каждой банке 2,5÷2,6 вольта;

    достижению максимальной плотности электролита, которая перестает изменяться;

    образованию бурного газовыделения, когда электролит начинает «закипать»;

    достижению емкости батареи, превышающей на 15÷20% величины, отданной при разряде.

Формы токов зарядных устройств для аккумуляторов

Условие зарядки аккумулятора состоит в том, что на его пластины должно подводиться напряжение, создающее ток во внутренней цепи определенного направления. Он может:

1. иметь постоянную величину;

2. или изменяться во времени по определенному закону.

В первом случае физико-химические процессы внутренней цепи идут неизменно, а во втором — по предлагаемым алгоритмам с цикличным нарастанием и затуханием, создающим колебательные воздействия на анионы и катионы. Последний вариант технологии применяется для борьбы с сульфатацией пластин.

Часть временны́х зависимостей тока заряда иллюстрируется графиками.

На нижней правой картинке видно явное отличие формы выходного тока зарядного устройства, использующего тиристорное управление для ограничения момента открытия полупериода синусоиды. За счет этого регулируется нагрузка на электрическую схему.

Естественно, что многочисленные современные зарядные устройства могут создавать и другие формы токов, не показанные на этой диаграмме.

Принципы создания схем для зарядных устройств

Для питания оборудования зарядных устройств обычно используется однофазная сеть 220 вольт. Это напряжение преобразуется в безопасное пониженное, которое прикладывается на входные клеммы аккумулятора через различные электронные и полупроводниковые детали.

Существует три схемы преобразования промышленного синусоидального напряжения в зарядных устройствах за счет:

1. использования электромеханических трансформаторов напряжения, работающих по принципу электромагнитной индукции;

2. применения электронных трансформаторов;

3. без использования трансформаторных устройств, основанных на делителях напряжения.

Технически возможно инверторное преобразование напряжения, которое стало широко применяться для , частотных преобразователей, осуществляющих управление электродвигателями. Но, для зарядки аккумуляторов это довольно дорогое оборудование.

Схемы зарядных устройств с трансформаторным разделением

Электромагнитный принцип передачи электрической энергии из первичной обмотки 220 вольт во вторичную полностью обеспечивает отделение потенциалов питающей цепи от потребляемой, исключает попадание ее на аккумулятор и повреждение при возникновении неисправностей изоляции. Этот метод наиболее безопасен.

Схемы силовых частей устройств с трансформатором имеют много разных разработок. На картинке ниже показаны три принципа создания разных токов силовой части от зарядных устройств за счет использования:

1. диодного моста со сглаживающим пульсации конденсатором;

2. диодного моста без сглаживания пульсаций;

3. одиночного диода, срезающего отрицательную полуволну.

Каждая из этих схем может применяться самостоятельно, но, обычно одна из них является основой, базой для создания другой, более удобной для эксплуатации и управления по величине выходного тока.

Применение комплектов силовых транзисторов с цепочками управления в верхней части картинки на схеме позволяет уменьшать выходное напряжение на контактах вывода цепи зарядного устройства, что обеспечивает регулировку величин постоянных токов, пропускаемых через подключенные аккумуляторы.

Один из вариантов подобной конструкции зарядного устройства с регулированием тока показан на рисунке ниже.

Такие же подключения во второй схеме позволяют регулировать амплитуду пульсаций, ограничивать ее на разных этапах зарядки.

Эффективно работает эта же средняя схема при замене в диодном мосту двух противоположных диодов тиристорами, одинаково регулирующими силу тока в каждом чередующемся полупериоде. А устранение отрицательных полугармоник возложено на оставшиеся силовые диоды.

Замена единичного диода на нижней картинке полупроводниковым тиристором с отдельной электронной схемой для управляющего электрода, позволяет уменьшать импульсы тока за счет более позднего их открытия, что тоже используется для различных способов зарядки аккумуляторов.

Один из вариантов подобной реализации схемы показан на рисунке ниже.

Сборка ее своими руками не составляет особого труда. Она может быть выполнена самостоятельно из доступных деталей, позволяет заряжать аккумуляторы токами до 10 ампер.

Промышленный вариант схемы трансформаторного зарядного устройства «Электрон-6» выполнен на базе двух тиристоров КУ-202Н. Для регулирования циклами открытия полугармоник для каждого управляющего электрода создана своя схема из нескольких транзисторов.

Среди автолюбителей пользуются популярностью устройства, позволяющие не только заряжать аккумуляторы, но еще и использовать энергию питающей сети 220 вольт для параллельного подключения ее к запуску двигателя автомобиля. Их называют пусковыми или пускозарядными. Они обладают еще более сложной электронной и силовой схемой.

Схемы с электронным трансформатором

Такие устройства выпускаются производителями для питания галогенных ламп напряжением 24 или 12 вольт. Они стоят относительно дёшево. Отдельные энтузиасты пытаются подключить их для зарядки маломощных аккумуляторов. Однако, эта технология широко не отработана, имеет существенные недостатки.

Схемы зарядных устройств без трансформаторного разделения

При последовательном подключении нескольких нагрузок к источнику тока общее напряжение входа делится по составным участкам. За счет этого способа работают делители, создающие понижение напряжения до определённой величины на рабочем элементе.

На этом принципе создаются многочисленные зарядные устройства с резистивно-емкостными сопротивлениями для маломощных аккумуляторов. Благодаря маленьким габаритам составных деталей их встраивают непосредственно внутрь фонарика.

Внутренняя электрическая схема полностью помещена в заводской изолированный корпус, исключающий контакт человека с потенциалом сети при зарядке.

Этот же принцип пытаются реализовать многочисленные экспериментаторы для зарядки автомобильных аккумуляторов, предлагая схему подключения от бытовой сети через конденсаторную сборку или лампочку накаливания мощностью в 150 ватт и , пропускающий импульсы тока одной полярности.

Подобные конструкции можно встретить на сайтах мастеров «сделай сам», расхваливающих простоту схемы, дешевизну деталей, возможность восстановления емкости разряженного аккумулятора.

Но, они молчат о том, что:

    открытая проводка 220 представляет ;

    нить накала лампы под напряжением нагревается, меняет свое сопротивление по закону, неблагоприятному для прохождения оптимальных токов через аккумулятор.

При включении под нагрузку через холодную нить и всю последовательно подключенную цепочку проходят очень большие токи. Кроме того, завершать зарядку следует маленькими токами, что тоже не выполняется. Поэтому аккумулятор, подвергшийся нескольким сериям подобных циклов, быстро теряет свою емкость и работоспособность.

Наш совет: не пользуйтесь этим методом!

Зарядные устройства создаются для работы с определёнными типами аккумуляторов, учитывают их характеристики и условия восстановления емкости. При использовании универсальных, многофункциональных приборов следует выбирать тот режим заряда, который оптимально подходит конкретному аккумулятору.

Loading...Loading...